N-TERM WIENER CHAOS APPROXIMATION RATES FOR ELLIPTIC PDEs WITH LOGNORMAL GAUSSIAN RANDOM INPUTS
نویسندگان
چکیده
منابع مشابه
Stochastic Collocation for Elliptic PDEs with random data - the lognormal case
We investigate the stochastic collocation method for parametric, elliptic partial differential equations (PDEs) with lognormally distributed random parameters in mixed formulation. Such problems arise, e.g., in uncertainty quantification studies for flow in porous media with random conductivity. We show the analytic dependence of the solution of the PDE w.r.t. the parameters and use this to sho...
متن کاملQuasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
In this paper we analyze the numerical approximation of diffusion problems over polyhedral domains in R (d = 1, 2, 3), with diffusion coefficient a(x, ω) given as a lognormal random field, i.e., a(x, ω) = exp(Z(x, ω)) where x is the spatial variable and Z(x, ·) is a Gaussian random field. The analysis presents particular challenges since the corresponding bilinear form is not uniformly bounded ...
متن کاملSparse polynomial approximation of parametric elliptic PDEs Part II: lognormal coefficients *
We consider the linear elliptic equation −div(a∇u) = f on some bounded domain D, where a has the form a = exp(b) with b a random function defined as b(y) = ∑ j≥1 yjψj where y = (yj) ∈ RN are i.i.d. standard scalar Gaussian variables and (ψj)j≥1 is a given sequence of functions in L∞(D). We study the summability properties of Hermite-type expansions of the solution map y 7→ u(y) ∈ V := H 0 (D), ...
متن کاملGalerkin approximation for elliptic PDEs on spheres
We discuss a Galerkin approximation scheme for the elliptic partial differential equation −∆u+ ω2u = f on Sn ⊂ Rn+1. Here ∆ is the Laplace-Beltrami operator on Sn, ω is a non-zero constant and f belongs to C2k−2(Sn), where k ≥ n/4 + 1, k is an integer. The shifts of a spherical basis function φ with φ ∈ H τ (Sn) and τ > 2k ≥ n/2 + 2 are used to construct an approximate solution. An H1(Sn)error ...
متن کاملA non-adapted sparse approximation of PDEs with stochastic inputs
Article history: Received 10 June 2010 Received in revised form 24 October 2010 Accepted 4 January 2011 Available online 9 January 2011
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Models and Methods in Applied Sciences
سال: 2014
ISSN: 0218-2025,1793-6314
DOI: 10.1142/s0218202513500681